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Abstract. We present the class of models of a nonmagnetic impurity in anS = 1/2 generalized
ladder with an Affleck–Kennedy–Lieb–Tasaki-type (AKLT-type) valence-bond ground state, and
of an S = 1/2 impurity in the S = 1 AKLT chain. The ground state in the presence of
impurity can be found exactly. The recently studied phenomenon of local enhancement of
antiferromagnetic correlations around the impurity is absent for this family of models.

Over the last decade, low-dimensional spin systems, particularly the Heisenberg spin chains
and ladders, have continued to attract considerable attention [1, 2]. The interest in spin
ladders is particularly stimulated by the hope of getting some insight into the physics of metal
oxide superconductors; in support of this hope, superconductivity in the ladder compound
Sr0.4Ca13.6Cu24O41.84 subjected to hole doping and under high pressure was recently reported
[3]. It is now well established that ‘standard’ (i.e., with only ‘leg’ and ‘rung’ exchange
couplings)S = 1

2 isotropic spin ladders have a disordered gapped ground state when the
number of legs is even, while odd-legged ladders have quasi-long-range-ordered gapless
ground states. On the other hand, ‘generalized’ ladders including other couplings can serve
as interesting toy models with a rich behaviour which is often very different from that of
‘standard’ models [4–9].

Recently, interesting experimental results on ladders doped with nonmagnetic impurities
(Zn substituted for Cu) have been obtained [10]: surprisingly, the antiferromagnetic (AF)
order was found to be stabilized by the doping; a similar behaviour has also been observed
for spin–Peierls chains [11]. A number of numerical studies [12, 13] indicated that local AF
correlations near a nonmagnetic impurity are enhanced compared to the case for a system
without vacancies. It has been suggested that this phenomenon, as well as several other
similar effects in one- and two-dimensional antiferromagnets [14], can be explained on a
common basis using the so-called ‘pruned’ resonating-valence-bond (RVB) picture [13].
Nonmagnetic impurity affects the formation of instant singlet bonds for spins which are
located in the immediate vicinity, making some of the bonds geometrically impossible and
thus enhancing the other bonds. This explanation is thought to be rather general and does
not depend much on the interaction details.
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In this paper I show that for certain models of nonmagnetic impurities in generalized
S = 1/2 spin ladders with exact matrix-product ground states of the type considered by us
recently [6, 9], local AF correlations are partly or completely insensitive to the presence of
impurity.
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Figure 1. Nonmagnetic impurity in the generalizedS = 1/2 spin ladder as described by the
Hamiltonian (1). TheV s denote the biquadratic couplings.

Consider the model of a vacancy in the generalizedS = 1/2 ladder with additional
diagonal and biquadratic interactions, described by the following Hamiltonian:

Ĥ =
∑
i

ĥi,i+1+ ĥ−1,1 (1)

where

ĥij = 1

2
JR(S1i · S2i + S1,i+1 · S2,i+1)+ J ijL (S1i · S1j + S2i · S2j )

+ J ijD (S1i · S2j + S2i · S1j )

+ V ijLL(S1i · S1j )(S2i · S2j )+ V ijDD(S1i · S2j )(S2i · S1j ).

Here the indices 1 and 2 distinguish lower and upper legs, andi labels rungs (see figure 1),
and the terms involving the vacancy siteS2,0 are implicitly assumed to be missing in̂h0,1

and ĥ−1,0. The ‘bulk’ couplingsJR, J i,i+1
L = J i,i+1

D = 1, andV i,i+1
LL = V i,i+1

DD = 4/5 do not
depend oni, JR is a free parameter, and we have introduced the extra ‘edge’ interaction
between the rungs−1 and 1 across the vacancy to make the problem solvable.

In the absence of the vacancy, the model (1) describes the generalized Bose–Gayen
model as introduced in reference [9], at the special value of the leg/diagonal coupling ratio
of 1. ForJR > 8/5 its ground state is a product of singlet bonds along the ladder rungs, and
we will be interested in the intervalJR < 8/5, where the ground state coincides with that of
the effectiveS = 1 Affleck–Kennedy–Lieb–Tasaki (AKLT) chain [15], whoseS = 1 spins
are formed by the triplet degrees of freedom of the rungs [9]. This effective AKLT ground
state can be conveniently written in the form of the so-called matrix-product state [16, 17]:

90 = tr

(∏
i

gi

)
gi = 1√

3

[ |t0〉i −√2|t+〉i√
2|t−〉i −|t0〉i

]
(2)
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where|tµ〉i , µ = 0,±1, are the triplet states of theith rung. The ground-state energy per
rung is [9]

E0 = −13/10+ JR/4.
We will look for the wave function of the ground state in the presence of the impurity

in the form of the following matrix product:

9
imp
0 = tr(g−N · · ·g−1G0g1 · · ·gN) (3)

where the matrixG0 corresponding to the unpaired spin at the 0th rung is chosen on the
basis of the requirement that9 imp

0 has both the total spin and itsz-projection equal to 1/2;
the most general form ofG0 is [18]

G0 = 1√
3+ x2

[
(x − 1)|↑〉 0
−2|↓〉 (x + 1)|↑〉

]
(4)

wherex is a free parameter. Physically, the wave function9 imp
0 describes a superposition

(x/
√

3)90,1/2
1/2 + 91,1/2

1/2 , where9jlad,1/2
jtot

denotes a wave function with the total spinjtot

composed from the states of the unpaired spin 1/2 and the states of the rest of the ladder
having total spinjlad; in 90,1/2

1/2 the unpaired spin is completely decoupled from the rest of
the ladder (which is in the effective AKLT state with one valence bond across the impurity),
while in 91,1/2

1/2 it is coupled with the edge Kennedy–Tasaki triplet [19] into the state with
jtot = 1/2; see figure 2.

0,1/2
1/2Ψ = s

t1,1/2
1/2Ψ =

Figure 2. A schematic valence-bond representation of the wave functions9
0,1/2
1/2 and91,1/2

1/2
contained in (3); solid and dashed lines denote singlet and triplet valence-bond links, respectively.
Solid ovals indicate that the spins on each rung are coupled into effective triplets; the dashed
oval in the bottom panel denotes that the triplet valence bond and the unpaired spin are coupled
into a spin-1/2 state.

Furthermore, the Hamiltonian (1) conserves parity with respect to the mirror trans-
formation i 7→ −i, and one can see that91,1/2

1/2 and90,1/2
1/2 have different parities. The

solution with completely decoupled unpaired spins is not very interesting, so we will look
for a ground-state wave function of the form (3), (4) withx = 0. Following the approach
outlined in reference [17], we demand that the local Hamiltonianĥimp, defined as (recall
that the terms withS2,0 should be dropped)

ĥimp = ĥ−1,0+ ĥ0,1+ ĥ−1,1− ε0 (5)

(where ε0 is a free parameter), annihilates all states contained in the matrix product
g−1G0g+1, and that all other eigenstates ofĥimp have positive energies. These conditions are

sufficient for9 imp
0 to be the ground state of̂H . The construction routine is well described

in the literature [17, 6, 9], so I only address it briefly here.
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The states of the [−1, 0, 1] block can be classified into multiplets9jm, wherej is the
total spin of the block andm is its z-projection. In total, there are ten multiplets (five
with j = 1/2, four with j = 3/2, and one withj = 5/2); one can however straight-
forwardly check that the matrix productg−1G0g+1 contains only states of the following
three multiplets:

9
g,1
1/2,m = ψ111

1/2,m 9
g,2
1/2,m = ψ110

1/2,m 9
g

3/2,m = ψ112
3/2,m. (6)

HereψSA,SB,SAB
jm denotes the state of the [−1, 0, 1] block with the total spinj , SA, SB , and

SAB being the total momenta of the−1 and+1 rungs and the [−1, 1] block, respectively.
The local Hamiltonian̂himp should annihilate the states (6), so it can be generally written
as a projector onto the subspace of the remaining seven multiplets:

9
e,1
1/2,m =

1√
2
(ψ101

1/2,m + ψ011
1/2,m) 9

e,2
1/2,m = ψ000

1/2,m

9
e,3
1/2,m =

1√
2
(ψ101

1/2,m − ψ011
1/2,m)

9
e,1
3/2,m =

1√
2
(ψ101

3/2,m + ψ011
3/2,m) 9

e,2
3/2,m = ψ111

3/2,m

9
e,3
3/2,m =

1√
2
(ψ101

3/2,m − ψ011
3/2,m) 9e

5/2,m = ψ112
5/2,m.

(7)

We make a further simplification—assuming thatĥimp does not mix the above multiplets;
hence,

ĥimp =
∑

j=1/2,3/2,5/2

∑
i

j∑
m=−j

λ
(i)
j |9e,i

jm〉〈9e,i
jm | (8)

where allλ(i)j should be positive to ensure that (3) is the ground state. Demanding further
that this structure is compatible with the particular form of the Hamiltonian (1), one arrives
at the following family of solutions for the coupling constants and the parameterε0:

J
−1,1
L = λ(1)1/2/2+ (1+ JR)/4 V

−1,1
LL = JR + 2λ(1)1/2− 1

J
−1,1
D = (1− λ(1)1/2)/2− JR/4 V

−1,1
DD = −2λ(1)1/2− JR

ε0 = −19/16+ JR/4
(9)

whereλ(1)1/2 plays the role of a free parameter, and the expressions for the other eigenvalues
are

λ
(2)
1/2 = 1− JR λ

(3)
1/2 = 1/4− (λ(1)1/2+ JR)/2

λ
(1)
3/2 = 3/2+ λ(1)1/2 λ

(2)
3/2 = 3/2 (10)

λ
(3)
3/2 = 2/5− (λ(1)1/2+ JR)/5 λ5/2 = 5/2.

The parameterε0 has the meaning of a ground-state energy of the [−1, 0, 1] block; thus the
states with and without a vacancy differ in energy by the valueε0 − 2E0. The conditions
of positivity of ĥimp require that

JR 6
1

2
− λ(1)1/2 λ

(1)
1/2 > 0. (11)

The most symmetric solution from the above family is achieved by settingλ
(1)
1/2 =

(1− 2JR)/4 andJR 6 1/2; then

J
−1,1
L = J−1,1

D = 3/8 V
−1,1
LL = V −1,1

DD = −1/2.
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Using the standard matrix-product technique, it is easy to calculate the spin-correlation
functions and distribution of the excess spin in the state (3). The mean value ofSz at each
site is given by

〈Sz1,0〉 = −
1

6
〈Sz1,i〉 = 〈Sz2,i〉 =

2

9

(
−1

3

)|i|−1

. (12)

Here |i| > 1. Following reference [13], we calculate the spin-correlation functions along
the ladder legs, with the starting site being next to the vacancy, and compare them to
the correlations in the absence of the vacancy. Quite surprisingly, one finds that the AF
correlations are not at all affected by the presence of a vacancy:

〈Sα1,0Sα1,i〉 = 〈Sα2,1Sα2,i+1〉 = (−1)|i|3−|i|−1 = 〈Sα1,nSα1,n+i〉w/o = 〈Sα2,nSα2,n+i〉w/o. (13)

Hereα = x, y, z, ‘w/o’ in the second line means ‘without vacancy’, and|i| > 1. Note that,
despite the presence of the excess spin, the spin correlations remainisotropic.

One can show that the above features (insensitivity of AF correlations to the presence
of a vacancy and their isotropic character) survive also in more complicated matrix-product-
solvable models: theansatz(3), (4) can obviously be used in its most general form, with
the ‘bulk’ matricesgi including singlet degrees of freedom of the ladder rungs [20]:

gi 7→ gi (u) = 1√
3+ u2

[
u|s〉i + |t0〉i −√2|t+〉i√

2|t−〉i u|s〉i − |t0〉i

]
.

Then generally the Hamiltonian (1) will not be invariant under the parity transformation
i → −i, so the matrix (4) can also be used in its general form with arbitraryx. (The
corresponding family of impurity models with exact ground states can be obtained for this
generalansatz, in exactly the same way as we did above; however, the resulting model
Hamiltonians are extremely cumbersome and therefore we do not present those solutions
here.) For such a state, the above formula for the correlations will change as follows:

〈Sα1,1Sα1,i+1〉 = 〈Sα2,1Sα2,i+1〉 = 〈Sα1,nSα1,n+i〉w/o = 〈Sα2,nSα2,n+i〉w/o = q |i|/(u2+ 3)

〈Sα1,0Sα1,i〉 =
(1+ x)q |i|

(1− u)(3+ x2)
q = u2− 1

u2+ 3
.

(14)

One can see that the AF correlations along the legs are not affected, except the correlations
involving the unpaired spinS1,0, which are enhanced ifu is in the interval between−x and
(x−3)/(1+x) and suppressed otherwise. In valence-bond-type models, the decay of all of
the correlations is purely exponential for all distances, and the presence of the impurity can
only change the prefactor, in front of the exponent; coincidentally, for the chosenansatz
(3), (4) the changes coming from the excess spin and ‘distortions’ due to the presence of
a vacancy completely compensate each other. The spin excess distribution is also modified
and is generally asymmetric:

〈Sz1,i〉 =
2(σx − 1)q |i|

(1− σu)(3+ x2)
〈Sz2,i〉 =

2(x − σ)q |i|
(u+ σ)(3+ x2)

〈Sz1,0〉 =
(x2− 1)

2(3+ x2)
σ ≡ sgn(i) |i| > 1.

Finally, one can observe that the model of a vacancy in theS = 1/2 ladder can be
reformulated as a model of theS = 1/2 impurity in theS = 1 AKLT chain. Consider the
model described by the following Hamiltonian:
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Figure 3. S = 1/2 impurity in theS = 1 AKLT chain as described by the Hamiltonian (15).τ
is the impurity spin, and theV s indicate the biquadratic couplings.

Ĥ =
∑
i>1

(̂hAKLT
i,i+1 + ĥAKLT

−i,−i−1)+ ĥimp (15)

where

ĥimp = (J+S1+ J−S−1) · τ + J ′(S−1 · S1)− ε0

+ (S−1 · S1)
{
(V+S1+ V−S−1) · τ

}+ V ′(S−1 · S1)
2.

Here

ĥAKLT
i,j = Si · Sj + 1

3
(Si · Sj )2

is the local Hamiltonian of the AKLT chain in the bulk, and̂himp describes the interaction
induced by the presence of the impurity spinτ (see figure 3), the parameterε0 being just a
constant energy shift having the meaning of the ground-state energy of the [−1, τ,1] block.
Using theansatz(3), (4), one can repeat the entire construction routine as described above
for the ladder, and obtain the following family of Hamiltonians for which9 imp

0 is the exact
ground state:

J± = {5(3− x2)/9± 2x}λ3/2+ 5λ5/2/9

J ′ = −(5+ x2)λ3/2/3+ 5λ5/2/6

V± = {−5(3+ x2)/9± 4x/3}λ3/2+ 5λ5/2/9

V ′ = −(15+ x2)λ3/2/9+ 5λ5/2/18

ε0 = (30− 2x2)λ3/2/9+ 5λ5/2/9.

(16)

Hereλ3/2 > 0, λ5/2 > 0 are the eigenvalues of̂himp corresponding to the multiplets

9e
3/2,m = (5+ x2)−1/2(xψ112

3/2,m −
√

5ψ111
3/2,m) 9e

5/2,m = ψ112
5/2,m

respectively. Forx 6= 0,∞ the equations (16) describe models with an asymmetric impurity.
Again, as in case of the ladder, one can straightforwardly check that the ‘edge’ spin-
correlation function in the presence of the impurity〈Sα1Sαi 〉 just coincides with that in the
bulk, independently of the value ofx. The above family contains two interesting solutions.
One is achieved by settingx = 0, λ5/2 = 3λ3/2 and describes the simple symmetric model
without biquadratic terms involving the impurity spinτ :

J± = J J ′ = −V ′ = 1

4
J V± = 0. (17)

Another solution corresponds toλ3/2 = 0; then the ground state of the model is twofold
degenerate since the even- and odd-parity wave functions9

imp
0 (x = 0) and9 imp

0 (x = ∞)
are eigenstates with the same energy.

In conclusion, I have presented two model families describing impurities in anti-
ferromagnetic (AF) spin chains and ladders which admit exact solutions for the ground
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state. Those models exhibit an interesting property of insensitivity of local AF correlations
to the presence of impurity, in contrast to the usual behaviour expected for standard models
with only nearest-neighbour bilinear exchange [13]. It should be remarked that there is no
contradiction between the results of reference [13] and those of the present paper, because the
models considered are very different; however, our results imply that the effect of impurity-
induced local enhancement of AF correlations, despite its generality, can be sensitive to
the details of local interaction near the impurity. For instance, an essential ingredient of
all of the models considered in the present paper is rather strong interaction of next-nearest
neighbours across the impurity (roughly, its strength is in the range from one quarter to one
half of the nearest-neighbour exchange).
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[17] Kl ümper A, Schadschneider A and Zittartz J 1991J. Phys. A: Math. Gen.24 L955
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